468 research outputs found

    Verification of Generalized Inconsistency-Aware Knowledge and Action Bases (Extended Version)

    Full text link
    Knowledge and Action Bases (KABs) have been put forward as a semantically rich representation of a domain, using a DL KB to account for its static aspects, and actions to evolve its extensional part over time, possibly introducing new objects. Recently, KABs have been extended to manage inconsistency, with ad-hoc verification techniques geared towards specific semantics. This work provides a twofold contribution along this line of research. On the one hand, we enrich KABs with a high-level, compact action language inspired by Golog, obtaining so called Golog-KABs (GKABs). On the other hand, we introduce a parametric execution semantics for GKABs, so as to elegantly accomodate a plethora of inconsistency-aware semantics based on the notion of repair. We then provide several reductions for the verification of sophisticated first-order temporal properties over inconsistency-aware GKABs, and show that it can be addressed using known techniques, developed for standard KABs

    Specification and Verification of Commitment-Regulated Data-Aware Multiagent Systems

    Get PDF
    In this paper we investigate multi agent systems whose agent interaction is based on social commitments that evolve over time, in presence of (possibly incomplete) data. In particular, we are interested in modeling and verifying how data maintained by the agents impact on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment-related conditions studied in the literature, which are typically based on propositional logics, to a first-order setting. To this purpose, we propose a rich framework for modeling data-aware commitment-based multiagent systems. In this framework, we study verification of rich temporal properties, establishing its decidability under the condition of “state-boundedness”, i.e., data items come from an infinite domain but, at every time point, each agent can store only a bounded number of them

    Plan Synthesis for Knowledge and Action Bases

    Get PDF
    We study plan synthesis for a variant of Knowledge and Action Bases (KABs), a rich, dynamic framework, where states are description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that possibly introduce new objects from an infinite domain. We show that plan existence over KABs is undecidable even under severe restrictions. We then focus on state-bounded KABs, a class for which plan existence is decidable, and provide sound and complete plan synthesis algorithms, which combine techniques based on standard planning, DL query answering, and finite-state abstraction. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning

    Synthesizing and executing plans in Knowledge and Action Bases

    Get PDF
    We study plan synthesis for a variant of Knowledge and Action Bases (KABs). KABs have been recently introduced as a rich, dynamic framework where states are full-fledged description logic (DL) knowledge bases (KBs) whose extensional part is manipulated by actions that can introduce new objects from an infinite domain. We show that, in general, plan existence over KABs is undecidable even under severe restrictions. We then focus on the class of state-bounded KABs, for which plan existence is decidable, and we provide sound and complete plan synthesis algorithms, through a novel combination of techniques based on standard planning, DL query answering, and finite-state abstractions. All results hold for any DL with decidable query answering. We finally show that for lightweight DLs, plan synthesis can be compiled into standard ADL planning. © 2016, CEUR-WS. All rights reserved

    Reasoning about Explanations for Negative Query Answers in DL-Lite

    Full text link
    In order to meet usability requirements, most logic-based applications provide explanation facilities for reasoning services. This holds also for Description Logics, where research has focused on the explanation of both TBox reasoning and, more recently, query answering. Besides explaining the presence of a tuple in a query answer, it is important to explain also why a given tuple is missing. We address the latter problem for instance and conjunctive query answering over DL-Lite ontologies by adopting abductive reasoning; that is, we look for additions to the ABox that force a given tuple to be in the result. As reasoning tasks we consider existence and recognition of an explanation, and relevance and necessity of a given assertion for an explanation. We characterize the computational complexity of these problems for arbitrary, subset minimal, and cardinality minimal explanations
    • …
    corecore